

DIFFERENTIAL EQUATIONS

Assignment 4 Practice by O.P. GUPTA • M. +91-9650350480

Q01. The degree of the differential equation $x^2 \frac{d^2y}{dx^2} = \left(x \frac{dy}{dx} - y \right)^3$ is

(a) 1 (b) 2 (c) 3 (d) 6

Q02. The integrating factor of the differential equation $(x + 3y^2) \frac{dy}{dx} = y$ is

(a) x (b) $\frac{1}{x}$ (c) $\frac{1}{y}$ (d) $-\frac{1}{y}$

Q03. The order and degree of the differential equation $\left(\frac{dy}{dx} \right)^3 + \left(\frac{d^3y}{dx^3} \right)^3 + 5x = 0$ are respectively

(a) 3; 6 (b) 3; 3 (c) 3; 9 (d) 6; 3

Q04. The integrating factor of the differential equation $x \frac{dy}{dx} = 2x^2 + y$ is

(a) x (b) $-x$ (c) $\frac{1}{x}$ (d) $-\frac{1}{x}$

Q05. The integrating factor of the differential equation $x \frac{dy}{dx} - y = \log x$ is

(a) $-\frac{1}{x}$ (b) $-x$ (c) $\frac{1}{x}$ (d) x

Q06. How many arbitrary constants are there in the particular solution of the differential equation $\frac{dy}{dx} = -4xy^2$; $y(0) = 1$?

(a) 1 (b) 2 (c) 3 (d) 0

Q07. If $\frac{dy}{dx} = \frac{x^3 - y^n}{x^2y + xy^2}$ is homogeneous, then value of n must be

(a) 1 (b) 2 (c) 3 (d) n

Q08. For $\frac{dy}{dx} - y = x e^x$, the integration factor is given by $f(x)$. Then $f'(0) =$

(a) e^{-x} (b) 1 (c) -1 (d) None of these

(where $f'(x)$ denotes the derivative of $f(x)$ w.r. to x)

Q09. For the differential equation $\frac{dy}{dx} - y = x e^x$, the solution is given by $y = f(x)$. Then the function $f(x)$ equals

(a) $y e^{-x} = c - \frac{x^2}{2}$ (b) $y e^{-x} = c + x e^{-x} - \frac{x^2}{2}$

(c) $y = e^x \left(c + \frac{x^2}{2} \right)$ (d) None of these

Q10. To solve the differential equation given by $x^2 \frac{dy}{dx} - xy = 1 + \cos\left(\frac{y}{x}\right)$, (where $x \neq 0$), we must substitute

(a) $x = v$

(b) $x = vy$

(c) $e^x = v$

(d) $y = v$

Q11. Integration factor for $\frac{dx}{dy} - x = \sin^2 y$ is

(a) e^y

(b) $\frac{1}{e^y}$

(c) e^x

(d) $\frac{1}{e^x}$

Q12. Find the general solution of the differential equation $\frac{dy}{dx} = a$, where a is an arbitrary constant.

Q13. Write the general solution of differential equation $\frac{dy}{dx} = e^{x+y}$.

Q14. Find the particular solution of the differential equation $\frac{dy}{dx} = y \tan x$, when $y(0) = 1$.

Q15. Solve the following differential equation: $\frac{dy}{dx} = x^3 \operatorname{cosec} y$, given that $y(0) = 0$.

Q16. Write the integrating factor of the differential equation $x \frac{dy}{dx} + 2y = x^2$.

Q17. Write the degree of the differential equation $1 + \left(\frac{dy}{dx} \right)^2 = x$.

Q18. Find the general solution of the differential equation $\frac{dy}{dx} + \frac{1}{x} = \frac{e^y}{x}$.

Q19. Find the general solution of the differential equation $e^{y-x} dy = dx$.

Q20. Solve the differential equation $xdy - ydx = \sqrt{x^2 + y^2} dx$.

Q21. Solve the differential equation $x \sin\left(\frac{y}{x}\right) \frac{dy}{dx} + x - y \sin\left(\frac{y}{x}\right) = 0$. Given that $x = 1$ when $y = \frac{\pi}{2}$.

Q22. Find the general solution of the differential equation $y e^{\frac{x}{y}} dx = \left(x e^{\frac{x}{y}} + y^2 \right) dy$, $y \neq 0$.

Q23. Find the particular solution of the differential equation

$$\cos y dx + (1 + e^{-x}) \sin y dy = 0, \text{ given that } y = \frac{\pi}{4} \text{ when } x = 0.$$

Q24. For the differential equation given below, find a particular solution satisfying the given condition $(x+1) \frac{dy}{dx} = 2e^{-y} + 1$; $y = 0$ when $x = 0$.

Q25. Find the general solution of the differential equation $x^2 y dx - (x^3 + y^3) dy = 0$.

Q26. Find the particular solution of the differential equation $\frac{dy}{dx} + y \sec x = \tan x$, where $x \in \left[0, \frac{\pi}{2} \right]$

given that $y = 1$, when $x = \frac{\pi}{4}$.

Q27. Find the general solution of the following differential equation: $x dy - (y + 2x^2) dx = 0$.

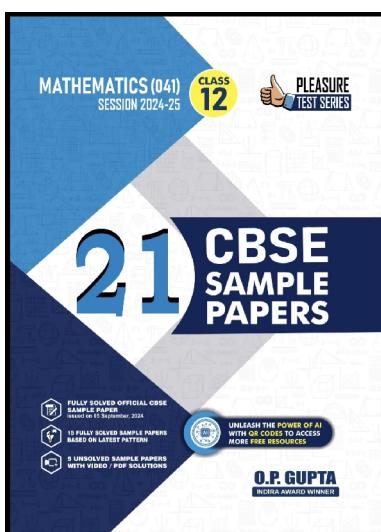
Q28. Solve the differential equation: $\left(1 + e^{\frac{y}{x}} \right) dy + e^{\frac{y}{x}} \left(1 - \frac{y}{x} \right) dx = 0$, $x \neq 0$.

Q29. Find the general solution of the differential equation $y e^y dx = (y^3 + 2x e^y) dy$.

Q30. Find the particular solution of the differential equation

$x \frac{dy}{dx} = y - x \tan\left(\frac{y}{x}\right)$, given that $y = \frac{\pi}{4}$ at $x = 1$.

Q31. Solve : $x \frac{dy}{dx} = y - x \cos^2\left(\frac{y}{x}\right)$.


Q32. If $\frac{ax}{y} = b \log|x| + C$ is the solution of D.E. $\frac{dy}{dx} = \frac{2xy - y^2}{2x^2}$ then, find the value of a and b.

Q33. Find the general solution of the following differential equation :

$$x^2 \frac{dy}{dx} - xy = 1 + \cos\left(\frac{y}{x}\right), x \neq 0.$$

- ① You may Share this PDF File with other Students and Teachers.
- ② You may add our WhatsApp no. 9650350480 to your groups to get Regular updates.

#WE-ARE-ON-MISSION

CBSE 21 SAMPLE PAPERS

For CBSE 2024-24 Exams ▪ Class 12 Maths (041)

Pleasure Test Series By O.P. Gupta

- ❖ Multiple Choices Questions
- ❖ Assertion-Reason (A-R) Questions
- ❖ Subjective type Questions (2 Markers, 3 Markers & 5 Markers)
- ❖ CASE STUDY QUESTIONS (As per Latest format for 2024-25)
- ❖ H.O.T.S. Questions
- ❖ Detailed Solutions of 16 Sample Papers
- ❖ ANSWERS of 5 Unsolved Sample Papers (with Video Solutions)

MANY DIRECT QUESTIONS HAVE BEEN
DIRECTLY TAKEN IN THE RECENT
CBSE EXAMS.. #We-Are-On-Mission

For order related queries, please contact by
WhatsApp @ +91 9650350480 (only message)

★ Buy on Amazon & Flipkart

Apart from being a content developer and author, Mr O.P. GUPTA enjoys Math Learning with the Students of XI & XII @ Think Academy.

Add. 1st Floor, Opp. HP Petrol Pump, Thana Road, Dhansa Bus Stand Metro Station, Najafgarh, New Delhi

■ Detailed Solutions will be uploaded on the YouTube Channel -- keep Subscribed

 [YouTube.com/MathematiciaByOPGupta](https://www.youtube.com/MathematiciaByOPGupta)

MATHEMATICIA BY O.P. GUPTA

...a name you can bank upon!

Feel Safe to **Share this Document** with other math scholars

CLICK NOW

TO Download

or, just type -
theopgupta.com

**FREE PDF TESTS AND
ASSIGNMENTS OF THE
CLASSES XII, XI & X**

To get **FREE PDF Materials**, join
WhatsApp Teachers Group
by Clicking on the Logo

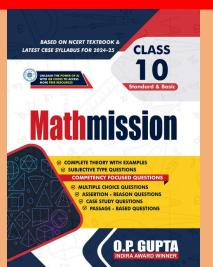
Click on the
Book cover
to buy!

If you are a **Student**, then you may
join our **Students Group**

CLICK HERE FOR
**CLASSES
IX & X**

CLICK HERE FOR
**CLASSES
XI & XII**

CLASS XII
Based on NCERT Textbooks &
Latest CBSE Syllabus for 2024-25


You can add our WhatsApp no. +919650350480 to your Groups also

Many Direct Questions from our Books have been asked in the recent CBSE Exams

Mathmission

UNLEASH THE POWER OF AI
WITH QR CODES TO ACCESS
MORE FREE RESOURCES

O.P. GUPTA
INDRA AWARD WINNER

**MATHMISSION
FOR XII, XI & X**
2024-25 Edition

X /theopgupta f /theopgupta Instagram /theopgupta YouTube /@theopgupta

For Bulk Orders of our Books at Discounted Price, contact on +91-9650350480

Buy our
books on
amazon
Flipkart

MOST REPUTED BOOKS OF XII, XI & X

MATHMISSION


REFRESHER BOOKS

Our all-inclusive Refresher-Guide feature

- ✓ **Theory**
- ✓ **Examples**
- ✓ **Subjective Questions**
- ✓ **Multiple Choice Questions**
- ✓ **Assertion Reason Questions**
- ✓ **Case Study Questions**
- ✓ **Answers**

SOLUTIONS OF MATHMISSION

MOST TRUSTED SAMPLE PAPERS

Our popular Sample Papers Guide feature

- ✓ Official CBSE Sample Papers with Solutions
- ✓ Plenty of Fully Solved Sample Papers
- ✓ Unsolved Sample Papers for Practice

NTA CUET (UG) Mathematics Question Bank

Buy our books Online

amazon

Flipkart

**GET BULK-ORDER @ THE DISCOUNTED PRICES
FOR SCHOOLS, COACHING & TUITION INSTITUTES.**
For Details, Contact On

Scan QR-Code to buy
our books on Amazon

WhatsApp @ +919650350480